[ 딥러닝 ] 딥러닝
2023. 9. 11. 20:10ㆍ딥러닝
728x90
1. 퍼셉트론(Perceptron)
1-1. 생물학적 뉴런
- 인간의 뇌는 수십억 개의 뉴런을 가지고 있음
- 뉴런은 화학적, 전기적 신호를 처리하고 전달하는 연결된 뇌신경 세포
1-2. 인공 뉴런(Perceptron)
- 1943년에 워렌 맥컬록, 월터 피츠 단순화된 뇌세포 개념을 발표
- 신경 세포를 이진 출력을 가진 단순한 논리 게이트라고 설명
- 생물학적 뉴런의 모델에 기초한 수학적 기능으로, 각 뉴런이 입력을 받아 개별적으로 가중치를 곱하여 나온 합계를 비선형 함수를 전달하여 출력을 생성
1-3. 논리 회귀(단층 퍼셉트론)로 OR, AND 문제 풀기
# OR 게이트 (하나라도 True면 True)
import torch
import torch.nn as nn
import torch.optim as optim
X = torch.FloatTensor([[0, 0], [0, 1], [1, 0], [1, 1]])
y = torch.FloatTensor([[0], [1], [1], [1]])
model = nn.Sequential(
nn.Linear(2, 1),
nn.Sigmoid() # Sotmax가 아니기 때문에 직접 확률을 구하는 Sigmoid()를 넣어주어야 함
)
print(model)
------------------------------------------------------------------------------------
# 결과
Sequential(
(0): Linear(in_features=2, out_features=1, bias=True)
(1): Sigmoid()
)
-----------------------------------------------------------------------------------
# 학습
optimizer = optim.SGD(model.parameters(), lr=1)
epochs = 1000
for epoch in range(epochs + 1):
y_pred = model(X)
loss = nn.BCELoss()(y_pred, y) # 단순 논리 회귀의 loss
optimizer.zero_grad()
loss.backward()
optimizer.step()
if epoch % 100 == 0:
y_bool = (y_pred >= 0.5).float()
accuracy = (y == y_bool).float().sum() / len(y) * 100
print(f'Epoch: {epoch:4d}/{epochs} Loss: {loss:.6f} Accuracy: {accuracy:.2f}%')
-------------------------------------------------------------------------------------
# 결과
Epoch: 0/1000 Loss: 0.809753 Accuracy: 25.00%
Epoch: 100/1000 Loss: 0.086609 Accuracy: 100.00%
Epoch: 200/1000 Loss: 0.046093 Accuracy: 100.00%
Epoch: 300/1000 Loss: 0.031063 Accuracy: 100.00%
Epoch: 400/1000 Loss: 0.023333 Accuracy: 100.00%
Epoch: 500/1000 Loss: 0.018650 Accuracy: 100.00%
Epoch: 600/1000 Loss: 0.015518 Accuracy: 100.00%
Epoch: 700/1000 Loss: 0.013279 Accuracy: 100.00%
Epoch: 800/1000 Loss: 0.011600 Accuracy: 100.00%
Epoch: 900/1000 Loss: 0.010295 Accuracy: 100.00%
Epoch: 1000/1000 Loss: 0.009253 Accuracy: 100.00%
-------------------------------------------------------------------------------------
1-4. 논리 회귀(단층 퍼셉트론)로 AND로 풀기
X = torch.FloatTensor([[0, 0], [0, 1], [1, 0], [1, 1]])
y = torch.FloatTensor([[0], [1], [1], [1]])
model = nn.Sequential(
nn.Linear(2, 1),
nn.Sigmoid() # Sotmax가 아니기 때문에 직접 확률을 구하는 Sigmoid()를 넣어주어야 함
)
optimizer = optim.SGD(model.parameters(), lr=1)
epochs = 1000
for epoch in range(epochs + 1):
y_pred = model(X)
loss = nn.BCELoss()(y_pred, y) # 단순 논리 회귀의 loss
optimizer.zero_grad()
loss.backward()
optimizer.step()
if epoch % 100 == 0:
y_bool = (y_pred >= 0.5).float()
accuracy = (y == y_bool).float().sum() / len(y) * 100
print(f'Epoch: {epoch:4d}/{epochs} Loss: {loss:.6f} Accuracy: {accuracy:.2f}%')
------------------------------------------------------------------------------------
# 결과
Epoch: 0/1000 Loss: 0.669457 Accuracy: 75.00%
Epoch: 100/1000 Loss: 0.088276 Accuracy: 100.00%
Epoch: 200/1000 Loss: 0.046586 Accuracy: 100.00%
Epoch: 300/1000 Loss: 0.031291 Accuracy: 100.00%
Epoch: 400/1000 Loss: 0.023463 Accuracy: 100.00%
Epoch: 500/1000 Loss: 0.018734 Accuracy: 100.00%
Epoch: 600/1000 Loss: 0.015576 Accuracy: 100.00%
Epoch: 700/1000 Loss: 0.013322 Accuracy: 100.00%
Epoch: 800/1000 Loss: 0.011633 Accuracy: 100.00%
Epoch: 900/1000 Loss: 0.010321 Accuracy: 100.00%
Epoch: 1000/1000 Loss: 0.009274 Accuracy: 100.00%
-------------------------------------------------------------------------------------
1-5. 논리회귀(단층 퍼셉트론)로 XOR문제 풀기
X = torch.FloatTensor([[0, 0], [0, 1], [1, 0], [1, 1]])
y = torch.FloatTensor([[0], [1], [1], [1]])
model = nn.Sequential(
nn.Linear(2, 1),
nn.Sigmoid() # Sotmax가 아니기 때문에 직접 확률을 구하는 Sigmoid()를 넣어주어야 함
)
optimizer = optim.SGD(model.parameters(), lr=1)
epochs = 1000
for epoch in range(epochs + 1):
y_pred = model(X)
loss = nn.BCELoss()(y_pred, y) # 단순 논리 회귀의 loss
optimizer.zero_grad()
loss.backward()
optimizer.step()
if epoch % 100 == 0:
y_bool = (y_pred >= 0.5).float()
accuracy = (y == y_bool).float().sum() / len(y) * 100
print(f'Epoch: {epoch:4d}/{epochs} Loss: {loss:.6f} Accuracy: {accuracy:.2f}%')
-----------------------------------------------------------------------------------------
# 결과
Epoch: 0/1000 Loss: 0.794193 Accuracy: 25.00%
Epoch: 100/1000 Loss: 0.093656 Accuracy: 100.00%
Epoch: 200/1000 Loss: 0.048133 Accuracy: 100.00%
Epoch: 300/1000 Loss: 0.031997 Accuracy: 100.00%
Epoch: 400/1000 Loss: 0.023863 Accuracy: 100.00%
Epoch: 500/1000 Loss: 0.018990 Accuracy: 100.00%
Epoch: 600/1000 Loss: 0.015754 Accuracy: 100.00%
Epoch: 700/1000 Loss: 0.013452 Accuracy: 100.00%
Epoch: 800/1000 Loss: 0.011732 Accuracy: 100.00%
Epoch: 900/1000 Loss: 0.010399 Accuracy: 100.00%
Epoch: 1000/1000 Loss: 0.009337 Accuracy: 100.00%
2. 역전파(Backpropagation)
- 1974, by Paul Werbos
- 1986, By Hinton
model = nn.Sequential(
nn.Linear(2,64),
nn.Sigmoid(),
nn.Linear(64,32),
nn.Sigmoid(),
nn.Linear(32,16),
nn.Sigmoid(),
nn.Linear(16,1),
nn.Sigmoid()
)
print(model)
------------------------------------------------
# 결과
Sequential(
(0): Linear(in_features=2, out_features=64, bias=True)
(1): Sigmoid()
(2): Linear(in_features=64, out_features=32, bias=True)
(3): Sigmoid()
(4): Linear(in_features=32, out_features=16, bias=True)
(5): Sigmoid()
(6): Linear(in_features=16, out_features=1, bias=True)
(7): Sigmoid()
)
------------------------------------------------------------
# 학습
optimizer = optim.SGD(model.parameters(), lr=1)
epochs = 1000
for epoch in range(epochs + 1):
y_pred = model(X)
loss = nn.BCELoss()(y_pred, y) # 단순 논리 회귀의 loss
optimizer.zero_grad()
loss.backward()
optimizer.step()
if epoch % 100 == 0:
y_bool = (y_pred >= 0.5).float()
accuracy = (y == y_bool).float().sum() / len(y) * 100
print(f'Epoch: {epoch:4d}/{epochs} Loss: {loss:.6f} Accuracy: {accuracy:.2f}%')
----------------------------------------------------------------------------------------
# 결과
Epoch: 0/1000 Loss: 0.903703 Accuracy: 25.00%
Epoch: 100/1000 Loss: 0.560680 Accuracy: 75.00%
Epoch: 200/1000 Loss: 0.552539 Accuracy: 75.00%
Epoch: 300/1000 Loss: 0.148512 Accuracy: 100.00%
Epoch: 400/1000 Loss: 0.008860 Accuracy: 100.00%
Epoch: 500/1000 Loss: 0.003539 Accuracy: 100.00%
Epoch: 600/1000 Loss: 0.002108 Accuracy: 100.00%
Epoch: 700/1000 Loss: 0.001472 Accuracy: 100.00%
Epoch: 800/1000 Loss: 0.001119 Accuracy: 100.00%
Epoch: 900/1000 Loss: 0.000897 Accuracy: 100.00%
Epoch: 1000/1000 Loss: 0.000746 Accuracy: 100.00%
728x90
반응형
'딥러닝' 카테고리의 다른 글
[ 딥러닝 ] CNN 기초 (0) | 2023.09.11 |
---|---|
[ 딥러닝 ] 활성화 함수 (0) | 2023.09.11 |
[ 딥러닝 ] 데이터로더 (0) | 2023.09.11 |
[ 딥러닝 ] 파이토치로 구현한 논리회귀 (0) | 2023.09.11 |
[ 딥러닝 ] 선형 회귀 (0) | 2023.07.06 |